245 research outputs found

    Bacteria Stimulate Hatching of Yellow Fever Mosquito Eggs

    Get PDF
    BACKGROUND: Aedes aegypti Linnaeus is a peridomestic mosquito that lays desiccation-resistant eggs in water-filled human-made containers. Previous investigations connected egg hatching with declining dissolved oxygen (DO) that is associated with bacterial growth. However, past studies failed to uncouple DO from other potential stimulatory factors and they contained little quantitative information about the microbial community; consequently, a direct role for bacteria or compounds associated with bacteria in stimulating egg hatching cannot be dismissed. METHODOLOGY/PRINCIPAL FINDINGS: Environmental factors stimulating hatch of Ae. aegypti eggs were investigated using non-sterile and sterile white oak leaf (WOL) infusions and a bacterial culture composed of a mix of 14 species originally isolated from bamboo leaf infusion. In WOL infusion with active microbes, 92.4% of eggs hatched in 2-h at an average DO concentration of 2.4 ppm. A 24-h old bacterial culture with a DO concentration of 0.73 ppm also stimulated 95.2% of eggs hatch within 1-h. In contrast, only 4.0% of eggs hatched in sterile infusion, whose DO averaged 7.4 ppm. Effects of bacteria were uncoupled from DO by exposing eggs to bacterial cells suspended in NaCl solution. Over a 4-h exposure period, 93.8% of eggs hatched while DO concentration changed minimally from 7.62 to 7.50 ppm. Removal of bacteria by ultra-filtration and cell-free filtrate resulted in only 52.0% of eggs hatching after 4-h at an average DO concentration of 5.5 ppm. CONCLUSIONS/SIGNIFICANCE: Collectively, the results provide compelling evidence that bacteria or water-soluble compounds secreted by bacteria, not just low DO concentration, stimulate hatching of Ae. aegypti eggs. However, the specific cues involved remain to be identified. These research findings contribute new insight into an important aspect of the oviposition biology of Ae. aegypti, a virus vector of global importance, providing the basis for a new paradigm of environmental factors involved in egg hatching

    Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions

    Get PDF
    BACKGROUND: The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. METHODS: We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. RESULTS: In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. CONCLUSIONS: Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to potential oviposition sites. Attractive bacterial isolates, when formulated for sustained release of attractants, could be coupled with an ovitrap containing a toxicant to achieve area-wide management of Aedes mosquitoes

    Responses of Amblyomma americanum and Dermacentor variabilis to Odorants That Attract Haematophagous Insects

    Get PDF
    Carbon dioxide (CO2), 1-octen-3-ol, acetone, ammonium hydroxide, L-lactic-acid, dimethyl trisulphide and isobutyric acid were tested as attractants for two tick species, Amblyomma americanum and Dermacentor variabilis (Acari: Ixodidae), in doseresponse bioassays using Y-tube olfactometers. Only CO2, acetone, 1-octen-3-ol and ammonium hydroxide elicited significant preferences from adult A. americanum, and only CO2 was attractive to adult D. variabilis. Acetone, 1-octen-3-ol and ammonium hydroxide were separately evaluated at three doses against CO2 (from dry ice) at a field site supporting a natural population of A. americanum nymphs and adults. Carbon dioxide consistently attracted the highest number of host-seeking ticks. However, for the first time, acetone, 1-octen-3-ol and ammonium hydroxide were shown to attract high numbers of A. americanum. Further research is needed to determine the utility of these semiochemicals as attractants in tick surveillance and area-wide management programmes

    Absence of Insect Juvenile Hormones in the American Dog Tick, Dermacentor veriabilis (Say) (Acari: Ixodidae), and in Ornithodoros parkeri Cooley (Acari: Argasidae)

    Get PDF
    Synganglia, salivary gland, midgut, ovary, fat body and muscle alone and in combination from the ixodid tick, Dermacentor variabilis (Say), or the argasid tick, Ornithodoros parkeri Cooley, were incubated in vitro in separate experiments with L-[methyl-3H]methionine and farnesoic acid or with [1-14C]acetate. Life stages examined in D. variabilis were 3 and 72 h old (after ecdysis) unfed nymphs, partially fed nymphs (18 and 72 h after attachment to the host), fully engorged nymphs (2 d after detachment from host), 3 and 72 h old (after eclosion) unfed females, partially fed unmated females (12–168 h after attachment to host) and mated replete females (2 d after detachment from the host). Those from O. parkeri were third and fourth stadium nymphs and female O. parkeri, 1–2 d after detachment. Corpora allata from Diploptera punctata, Periplaneta americana and Gromphadorina portentosa were used as positive controls in these experiments. No farnesol, methyl farnesoate, JH I, JH II, JH III, or JHIII bisepoxide was detected by radio HPLC from any tick analysis while JH III, methyl farnesoate, and farnesol were detected in the positive controls. To examine further for the presence of a tick, insect-juvenilizing agent, Galleria pupal–cuticle bioassays were conducted on lipid extracts from 10 and 15 d old eggs, unfed larvae (1–5 d after ecdysis), unfed nymphs (1–7 d after ecdysis), and partially fed, unmated female adults (completed slow feeding phase) of D. variabilis. Whole body extracts of fourth stadium D. punctata and JH III standard were used as positive controls. No juvenilizing activity in any of the tick extracts could be detected. Electron impact, gas chromatography–mass spectrometry of hemolymph extracts from fed, virgin (forcibly detached 7 d after attachment) and mated, replete (allowed to drop naturally) D. variabilis and fully engorged (1–2 d after detachment) O. parkeri females also failed to identify the common insect juvenile hormones. The same procedures were successful in the identification of JH III in hemolymph of fourth stadium D. punctata. Last stadium nymphal (female) O. parkeri implanted with synganglia from second nymphal instars underwent normal eclosion to the adult. The above studies in toto suggest that D. variabilis and O. parkeri do not have the ability to make the common insect juvenile hormones, and these juvenile hormones do not regulate tick metamorphosis or reproduction as hypothesized in the literature

    Tick Ecdysteroid Hormone, Global Microbiota/\u3ci\u3eRickettsia\u3c/i\u3e Signaling in the Ovary Versus Carcass During Vitellogenesis in Part-Fed (Virgin) American Dog Ticks, \u3ci\u3eDermacentor variabilis\u3c/i\u3e

    Get PDF
    The transovarial transmission of tick-borne bacterial pathogens is an important mechanism for their maintenance in natural populations and transmission, causing disease in humans and animals. The mechanism for this transmission and the possible role of tick hormones facilitating this process have never been studied. Injections of physiological levels of the tick hormone, 20-hydroxyecdysone (20E), into part-fed (virgin) adult females of the American dog tick, Dermacentor variabilis, attached to the host caused a reduction in density of Rickettsia montanensis in the carcass and an increase in the ovaries compared to buffer-injected controls. This injection initiates yolk protein synthesis and uptake by the eggs but has no effect on blood feeding. Francisella sp. and R. montanensis were the predominant bacteria based on the proportionality in the carcass and ovary. The total bacteria load increased in the carcass and ovaries, and bacteria in the genus Pseudomonas increased in the carcass after the 20E injection. The mechanism of how the Rickettsia species respond to changes in tick hormonal regulation needs further investigation. Multiple possible mechanisms for the proliferation of R. montanensis in the ovaries are proposed

    Comparative Efficacy of BioUD to Other Commercially Available Arthropod Repellants Against the Ticks Amblyomma americanum and Dermacentor variabilis on Cotton Cloth

    Get PDF
    BioUD is an arthropod repellent that contains the active ingredient 2-undecanone originally derived from wild tomato plants. Repellency of BioUD was compared with five commercially available arthropod repellents against the ticks Amblyomma americanum (L.) and Dermacentor variabilis Say in two-choice bioassays on treated versus untreated cotton cheesecloth. Overall mean percentage repellency against both species was greatest for and did not differ significantly between BioUD (7.75% 2-undecanone) and products containing 98.1% DEET, 19.6% IR3535, and 30% oil of lemon eucalyptus. Products containing 5% and 15% Picaridin and 0.5% permethrin were also repellent compared with untreated controls but to a lesser degree than BioUD. The four most active repellents at the same concentrations used before were directly compared in head-to-head bioassays on cotton cheesecloth. BioUD provided significantly greater overall mean percentage repellency than IR3535 for A. americanum and D. variabilis. BioUD was significantly more repellent than oil of lemon eucalyptus for A. americanum but did not differ significantly in repellency against D. variabilis. No statistically significant difference in overall mean percentage repellency was found between BioUD and DEET for A. americanum or D. variabilis. In a 7-week time course bioassay, BioUD applied to cotton cheesecloth and held at room temperature provided 5 weeks of \u3e 90% repellency against A. americanum

    Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals

    Get PDF
    A novel nested PCR assay was developed to detect Rickettsia spp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) of Rickettsia spp. The newly designed primers were evaluated using genomic DNA from 11 Rickettsia species belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to other Rickettsia -specific PCR targets ( ompA , gltA , and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11 Rickettsia spp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from “ Candidatus Rickettsia amblyommii.” Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adult Dermacentor variabilis ticks. The nested 23S-5S IGS assay detected Rickettsia DNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species of Rickettsia . The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species of Rickettsia in the ticks. “ Candidatus Rickettsia amblyommii,” R. montanensis , R. felis , and R. bellii were frequently identified species, along with some potentially novel Rickettsia strains that were closely related to R. bellii and R. conorii

    An Experimental Field Study of Delayed Density Dependence in Natural Populations of Aedes albopictus

    Get PDF
    Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation

    Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate

    Get PDF
    Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry
    • 

    corecore